feATURES

- Low Input Offset Voltage: 500 VV Max
- Output Swings to 10 mV Max from V^{-}
- Rail-to-Rail Input and Output
- Micropower: 50 A A/Amplifier Max
- MSOP Package
- Over-The-Top ${ }^{\text {TM }}$ Input Common Mode Range Extends 44V Above V^{-}, Independent of V^{+}
- Specified on $3 \mathrm{~V}, 5 \mathrm{~V}$ and $\pm 15 \mathrm{~V}$ Supplies
- High Output Current: 20mA
- Output Drives 10,000 pF with Output Compensation
- Reverse Battery Protection to 18V
- No Supply Sequencing Problems
- High Voltage Gain: 1500V/mV
- High CMRR: 98dB
- No Phase Reversal
- Gain Bandwidth Product: 200kHz

APPLICATIONS

- Battery- or Solar-Powered Systems

Portable Instrumentation
Sensor Conditioning

- Supply Current Sensing
- Battery Monitoring
- Micropower Active Filters
- 4 mA to 20 mA Transmitters

DESCRIPTIOn

The LT ${ }^{\circledR} 1490$ A is an enhanced version of the popular LT1490 op amp with improved input offset voltage ($500 \mu \mathrm{~V}$ max) and output voltage swing (10 mV max from V^{-}). It is recommended for all new designs. The LT1490A operates on all single and split supplies with a total voltage of 2 V to 44 V , drawing only $40 \mu \mathrm{~A}$ of quiescent current per amplifier. It is reverse supply protected; it draws virtually no current for reverse supply up to 18 V . The input range of the LT1490A includes both supplies and the output swings to both supplies. Unlike most micropower op amps, the LT1490A can drive heavy loads; its rail-to-rail output drives 20 mA . The LT1490A is unity-gain stable and drives all capacitive loads up to 10,000 pF when optional $0.22 \mu \mathrm{~F}$ and 150Ω compensation is used.
The LT1490A has a unique input stage that operates and remains high impedance when above the positive supply. The inputs take 44V both differential and common mode even when operating on a 3 V supply. Built-in resistors protect the inputs for faults below the negative supply up to 15 V . There is no phase reversal of the output for inputs 15 V below V^{-}or 44 V above V^{-}, independent of V^{+}.

The LT1490A dual op amp is available in the 8-pin MSOP, PDIP and SO packages.
$\boldsymbol{\Omega}$, LTC and LT are registered trademarks of Linear Technology Corporation. Over-The-Top is a trademark of Linear Technology Corporation.

TYPICAL APPLICATION

ABSOLUTE MAXIMUM RATINGS (Note 1)

Total Supply Voltage (V^{+}to V^{-}) 44 V	Operating Temperature Range
Differential Input Voltage 44V	(Note 3) .. $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Input Current .. $\pm 12 \mathrm{~mA}$	Specified Temperature Range (Note 4) .. $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Output Short-Circuit Duration (Note 2) Continuous	Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Junction Temperature 1500 C	Lead Temperature (Soldering, 10 sec)............... $300^{\circ} \mathrm{C}$

PACKAGE/ORDER INFORMATION

	ORDER PART NUMBER		ORDER PART NUMBER
	LT1490ACMS8		LT1490ACN8
	LT1490AIMS8		
			LT1490AIS8
	MS8 PART MARKING		
	LTNG		S8 PART MARKING
	LTPU		1490A
			1490AI

Consult factory for Military grade parts.

ELECTRICAL CHARACTERISTICS
The • denotes specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \mathrm{V}_{S}=3 \mathrm{~V}, \mathrm{OV} ; \mathrm{V}_{S}=5 \mathrm{~V}$, OV unless otherwise noted. (Note 4)

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage (Note 5)	N8, S8 Package $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$ $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$	\bullet		110	$\begin{aligned} & 500 \\ & 700 \\ & 800 \end{aligned}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$ $\mu \mathrm{V}$
		MS8 Package $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$ $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$	\bullet		220	$\begin{aligned} & 1000 \\ & 1200 \\ & 1400 \end{aligned}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$ $\mu \mathrm{V}$
	Input Offset Voltage Drift (Note 9)	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$	\bullet		2	4	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
l OS	Input Offset Current	$\mathrm{V}_{\text {CM }}=44 \mathrm{~V}$ (Note 6)	\bullet		0.2	$\begin{aligned} & 0.8 \\ & 0.8 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mu \mathrm{~A} \end{aligned}$
I_{B}	Input Bias Current	$\begin{aligned} & \left.V_{C M}=44 \mathrm{~V} \text { (Note } 6\right) \\ & V_{S}=0 \mathrm{~V} \end{aligned}$	\bullet		$\begin{gathered} 1 \\ 3 \\ 0.3 \end{gathered}$	$\begin{gathered} 8 \\ 10 \end{gathered}$	$n A$ μA $n A$
	Input Noise Voltage	0.1 Hz to 10 Hz			1		$\mu \mathrm{VP}_{\text {P-P }}$
e_{n}	Input Noise Voltage Density	$\mathrm{f}=1 \mathrm{kHz}$			50		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
i_{n}	Input Noise Current Density	$\mathrm{f}=1 \mathrm{kHz}$			0.03		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
$\mathrm{R}_{\text {IN }}$	Input Resistance	Differential Common Mode, $\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$ to 44 V		$\begin{aligned} & 6 \\ & 4 \end{aligned}$	$\begin{aligned} & 17 \\ & 11 \end{aligned}$		$\begin{aligned} & \mathrm{M} \Omega \\ & \mathrm{M} \Omega \end{aligned}$

ELECTRICAL CHARACTERISTICS The odenotes specifications which apply vere the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}, 0 \mathrm{~V} ; \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, 0 \mathrm{~V}$ unless otherwise noted. (Note 4)

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{C}_{\text {IN }}$	Input Capacitance			4.6			pF
	Input Voltage Range		\bullet	0		44	V
CMRR	Common Mode Rejection Ratio (Note 6)	$\begin{aligned} & V_{C M}=0 \mathrm{~V} \text { to } V_{C C}-1 \mathrm{~V} \\ & V_{C M}=0 \mathrm{~V} \text { to } 44 \mathrm{~V} \end{aligned}$	\bullet	$\begin{aligned} & 84 \\ & 80 \end{aligned}$	$\begin{aligned} & 98 \\ & 98 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Avol	Large-Signal Voltage Gain	$\begin{aligned} & V_{S}=3 V, V_{0}=500 \mathrm{mV} \text { to } 2.5 \mathrm{~V}, R_{L}=10 \mathrm{k} \\ & 0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \leq T_{A} \leq 85^{\circ} \mathrm{C} \end{aligned}$	\bullet	$\begin{aligned} & 200 \\ & 133 \\ & 100 \end{aligned}$	1500		$\begin{aligned} & \mathrm{V} / \mathrm{mV} \\ & \mathrm{~V} / \mathrm{mV} \\ & \mathrm{~V} / \mathrm{mV} \end{aligned}$
		$\begin{aligned} & V_{S}=5 \mathrm{~V}, \mathrm{~V}_{0}=500 \mathrm{mV} \text { to } 4.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \leq T_{A} \leq 85^{\circ} \mathrm{C} \end{aligned}$	\bullet	$\begin{aligned} & 400 \\ & 250 \\ & 200 \\ & \hline \end{aligned}$	1500		$\begin{aligned} & \mathrm{V} / \mathrm{mV} \\ & \mathrm{~V} / \mathrm{mV} \\ & \mathrm{~V} / \mathrm{mV} \end{aligned}$
V OL	Output Voltage Swing Low	$\begin{aligned} & V_{S}=3 V, \text { No Load } \\ & V_{S}=3 V, I_{\text {SINK }}=5 \mathrm{~mA} \end{aligned}$	\bullet		$\begin{gathered} 3 \\ 250 \end{gathered}$	$\begin{gathered} 10 \\ 450 \end{gathered}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
		$\begin{aligned} & V_{S}=5 \mathrm{~V}, \mathrm{No}_{0} \text { Load } \\ & V_{S}=5 \mathrm{~V}, I_{\text {SINK }}=5 \mathrm{~mA} \\ & V_{S}=5 \mathrm{~V}, I_{\text {SINK }}=10 \mathrm{~mA} \end{aligned}$	\bullet		$\begin{gathered} \hline 3 \\ 250 \\ 330 \end{gathered}$	$\begin{gathered} \hline 10 \\ 500 \\ 500 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
V_{OH}	Output Voltage Swing High	$\begin{aligned} & V_{S}=3 V, \text { No Load } \\ & V_{S}=3 \mathrm{~V}, I_{\text {SOURCE }}=5 \mathrm{~mA} \end{aligned}$	\bullet	$\begin{aligned} & 2.95 \\ & 2.55 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.978 \\ & 2.6 \\ & \hline \end{aligned}$		V
		$\begin{aligned} & V_{S}=5 \mathrm{~V}, \text { No Load } \\ & V_{S}=5 \mathrm{~V}, I_{\text {SOURCE }}=10 \mathrm{~mA} \end{aligned}$	\bullet	$\begin{aligned} & 4.95 \\ & 4.30 \end{aligned}$	$\begin{aligned} & 4.978 \\ & 4.6 \end{aligned}$		V
ISC	Short-Circuit Current (Note 2)	$V_{S}=3 V$, Short to GND $V_{S}=3 V$, Short to $V_{C C}$		$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 15 \\ & 30 \end{aligned}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
		$\begin{aligned} & V_{S}=5 \mathrm{~V} \text {, Short to } \mathrm{GND} \\ & V_{S}=5 \mathrm{~V} \text {, Short to } V_{C C} \\ & \hline \end{aligned}$		$\begin{aligned} & 15 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & 25 \\ & 30 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \hline \end{aligned}$
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{S}=2.5 \mathrm{~V}$ to 12.5V, $\mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{0}=1 \mathrm{~V}$	\bullet	84	98		dB
	Minimum Operating Supply Voltage		\bullet		2	2.5	V
	Reverse Supply Voltage	$\mathrm{I}_{S}=-100 \mu \mathrm{~A}$ per Amplifier	\bullet	18	27		V
I_{S}	Supply Current per Amplifier (Note 7)		\bullet		40	$\begin{aligned} & 50 \\ & 55 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
GBW	Gain Bandwidth Product (Note 6)	$\begin{aligned} & \mathrm{f}=1 \mathrm{kHz} \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq 70^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq 85^{\circ} \mathrm{C} \end{aligned}$	\bullet	$\begin{gathered} 110 \\ 100 \\ 90 \end{gathered}$	180		kHz kHz kHz
SR	Slew Rate (Note 8)	$\begin{aligned} & A_{V}=-1, R_{L}=\infty \\ & 0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \leq T_{A} \leq 85^{\circ} \mathrm{C} \end{aligned}$	\bullet	$\begin{aligned} & 0.035 \\ & 0.031 \\ & 0.030 \end{aligned}$	0.06		$\begin{aligned} & V / \mu \mathrm{S} \\ & \mathrm{~V} / \mu \mathrm{S} \\ & \mathrm{~V} / \mu \mathrm{S} \end{aligned}$

The \bullet denotes specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ unless otherwise noted. (Note 4)

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{V}_{0 S}$	Input Offset Voltage (Note 5)	N8, S8 Package $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$ $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$	\bullet		150	$\begin{gathered} \hline 700 \\ 950 \\ 1100 \\ \hline \end{gathered}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$ $\mu \mathrm{V}$
		MS8 Package $\begin{aligned} & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C} \end{aligned}$	\bullet		250	$\begin{aligned} & 1200 \\ & 1350 \\ & 1500 \end{aligned}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$ $\mu \mathrm{V}$

ELECTRICAL CHARACTERISTICS The denotes speciifications which apply ver the full operating temperature range, otherwise specifications are at $\mathrm{T}_{A}=25^{\circ} \mathrm{C}$. $\mathrm{V}_{S}= \pm 15 \mathrm{~V}$ unless otherwise noted. (Note 4)

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
	Input Offset Voltage Drift (Note 9)	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$	\bullet		2	6	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\underline{10 S}$	Input Offset Current		\bullet		0.2	0.8	nA
IB	Input Bias Current		\bullet		1	8	nA
	Input Noise Voltage	0.1 Hz to 10Hz			1		$\mu V_{\text {P-P }}$
e_{n}	Input Noise Voltage Density	$\mathrm{f}=1 \mathrm{kHz}$			50		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
in_{n}	Input Noise Current Density	$\mathrm{f}=1 \mathrm{kHz}$			0.03		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
$\mathrm{R}_{\text {IN }}$	Input Resistance	Differential Common Mode, $\mathrm{V}_{\mathrm{CM}}=-15 \mathrm{~V}$ to 14 V		6	$\begin{gathered} 17 \\ 15000 \\ \hline \end{gathered}$		$\begin{aligned} & \mathrm{M} \Omega \\ & \mathrm{M} \Omega \\ & \hline \end{aligned}$
$\mathrm{C}_{\text {IN }}$	Input Capacitance				4.6		pF
	Input Voltage Range		\bullet	-15		29	V
CMRR	Common Mode Rejection Ratio	$\mathrm{V}_{\text {CM }}=-15 \mathrm{~V}$ to 29 V	\bullet	80	98		dB
AvOL	Large-Signal Voltage Gain	$\begin{aligned} & V_{0}= \pm 14 \mathrm{~V}, R_{L}=10 \mathrm{k} \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq 85^{\circ} \mathrm{C} \end{aligned}$	\bullet	$\begin{aligned} & 100 \\ & 75 \\ & 50 \end{aligned}$	250		V / mV V / mV V/mV
V_{0}	Output Voltage Swing	No Load $I_{\text {OUT }}= \pm 5 \mathrm{~mA}$ $I_{\text {OUT }}= \pm 10 \mathrm{~mA}$	\bullet	$\begin{aligned} & \pm 14.9 \\ & \pm 14.5 \\ & \pm 14.5 \end{aligned}$	$\begin{aligned} & \pm 14.978 \\ & \pm 14.750 \\ & \pm 14.670 \end{aligned}$		V V V
ISC	Short-Circuit Current (Note 2)	Short to GND $\begin{aligned} & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C} \end{aligned}$	\bullet	$\begin{aligned} & \pm 20 \\ & \pm 15 \\ & \pm 10 \end{aligned}$	± 25		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{\mathrm{S}}= \pm 1.25 \mathrm{~V}$ to $\pm 22 \mathrm{~V}$	\bullet	88	98		dB
Is	Supply Current per Amplifier		\bullet		50	$\begin{aligned} & 70 \\ & 85 \end{aligned}$	$\overline{\mu \mathrm{A}}$ $\mu \mathrm{A}$
GBW	Gain Bandwidth Product	$\begin{aligned} & \mathrm{f}=1 \mathrm{kHz} \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C} \end{aligned}$	\bullet	$\begin{aligned} & 125 \\ & 110 \\ & 100 \\ & \hline \end{aligned}$	200		kHz kHz kHz
SR	Slew Rate	$\begin{aligned} & A_{V}=-1, R_{L}=\infty, V_{0}= \pm 10 \mathrm{~V}, \\ & \text { Measure at } V_{0}= \pm 5 \mathrm{~V} \\ & 0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C} \end{aligned}$	\bullet	$\begin{aligned} & 0.0375 \\ & 0.0330 \\ & 0.0300 \end{aligned}$	0.07		V/ $\mu \mathrm{S}$ V/ $\mu \mathrm{s}$ $\mathrm{V} / \mu \mathrm{s}$

Note 1: Absolute Maximum Ratings are those values beyond which the life of the device may be impaired.
Note 2: A heat sink may be required to keep the junction temperature below absolute maximum. This depends on the power supply voltage and how many amplifiers are shorted.
Note 3: The LT1490AC and LT1490AI are guaranteed functional over the operating temperature range of $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
Note 4: The LT1490AC is guaranteed to meet specified performance from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. The LT1490AC is designed, characterized and expected to meet specified performance from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ but is not tested or QA sampled at these temperatures. The LT1490l is guaranteed to meet specified performance from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

Note 5: ESD (Electrostatic Discharge) sensitive device. Extensive use of ESD protection devices are used internal to the LT1490A. However, high electrostatic discharge can damage or degrade the device. Use proper ESD handling precautions.
Note 6: $\mathrm{V}_{S}=5 \mathrm{~V}$ limits are guaranteed by correlation to $\mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}$ and $V_{S}= \pm 15 \mathrm{~V}$ tests.
Note 7: $\mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}$ limits are guaranteed by correlation to $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$ and $V_{S}= \pm 15 \mathrm{~V}$ tests.
Note 8: Guaranteed by correlation to slew rate at $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ and GBW at $V_{S}=3 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ tests.
Note 9: This parameter is not 100% tested.

TYPICAL PERFORMARCE CHARACTERISTICS

TYPICAL PERFORMANCG CHARACTERISTICS

Gain Bandwidth Product and
Phase Margin vs Supply Voltage

Gain Bandwidth Product and
Phase Margin vs Load Resistance

Gain Bandwidth Product
vs Temperature

1490A G11

1490A G12

Output Impedance vs Frequency

TYPICAL PGRFORmANCE CHARACTERISTICS

Total Harmonic Distortion + Noise vs Frequency

Settling Time to 0.1\% vs Output Step

Total Harmonic Distortion + Noise vs Load Resistance

1490A G23
Large-Signal Response

Capacitive Load Handling,
Overshoot vs Capacitive Load

Total Harmonic Distortion + Noise vs Output Voltage

Small-Signal Response

APPLICATIONS INFORMATION

Supply Voltage

The positive supply pin of the LT1490A should be bypassed with a small capacitor (about $0.01 \mu \mathrm{~F}$) within an inch of the pin. When driving heavy loads an additional $4.7 \mu \mathrm{~F}$ electrolytic capacitor should be used. When using split supplies, the same is true for the negative supply pin.
The LT1490A is protected against reverse battery voltages up to 18 V . In the event a reverse battery condition occurs, the supply current is less than 1 nA .

The LT1490A can be shut down by removing V^{+}. In this condition the input bias current is typically less than $0.5 n \mathrm{~A}$, even if the inputs are 44 V above the negative supply.

When operating the LT1490A on total supplies of 20 V or more, the supply must not rise to its final voltage in less than $1 \mu \mathrm{~s}$. This is especially true if low ESR bypass capacitors are used. A series RLC circuit is formed from the supply lead inductance and the bypass capacitor. A resistance of 7.5Ω in the supply or in the bypass capacitor will dampen the tuned circuit enough to limit the rise time.

Inputs

The LT1490A has two input stages, NPN and PNP (see the Simplified Schematic), resulting in three distinct operating regions as shown in the Input Bias Current vs Common Mode typical performance curve.

For input voltages about 0.8 V or more below V^{+}, the PNP input stage is active and the input bias current is typically -1 nA . When the input voltage is about 0.5 V or less from V^{+}, the NPN input stage is operating and the input bias current is typically $25 n \mathrm{~A}$. Increases in temperature will cause the voltage at which operation switches from the PNP stage to the NPN stage to move towards V^{+}. The input offset voltage of the NPN stage is untrimmed and is typically $600 \mu \mathrm{~V}$.
A Schottky diode in the collector of each NPN transistor of the NPN input stage allows the LT1490A to operate with either or both of its inputs above V^{+}. At about 0.3 V above V^{+}the NPN input transistor is fully saturated and the input bias current is typically $3 \mu \mathrm{~A}$ at room temperature. The input offset voltage is typically $700 \mu \mathrm{~V}$ when operating above V^{+}. The LT1490A will operate with its inputs 44 V above V^{-}regardless of V^{+}.

The inputs are protected against excursions as much as 15 V below V^{-}by an internal 1 k resistor in series with each input and a diode from the input to the negative supply. There is no output phase reversal for inputs up to 15 V below V^{-}. There are no clamping diodes between the inputs and the maximum differential input voltage is 44 V .

Output

The output voltage swing of the LT1490A is affected by input overdrive as shown in the typical performance curves.

The output of the LT1490A can be pulled up to 18 V beyond V^{+}with less than 1nA of leakage current, provided that V^{+} is less than 0.5 V .

The normally reverse-biased substrate diode from the output to V^{-}will cause unlimited currents to flow when the output is forced below V^{-}. If the current is transient and limited to 100 mA , no damage will occur.

The LT1490A is internally compensated to drive at least 200 pF of capacitance under any output loading conditions. A $0.22 \mu \mathrm{~F}$ capacitor in series with a 150Ω resistor between the output and ground will compensate these amplifiers for larger capacitive loads, up to 10,000pF, at all output currents.

Distortion

There are two main contributors of distortion in op amps: output crossover distortion as the output transitions from sourcing to sinking current and distortion caused by nonlinear common mode rejection. Of course, if the op amp is operating inverting there is no common mode induced distortion. When the LT1490A switches between input stages there is significant nonlinearity in the CMRR. Lower load resistance increases the output crossover distortion, but has no effect on the input stage transition distortion. For lowest distortion the LT1490A should be operated single supply, with the output always sourcing current and with the input voltage swing between ground and ($\mathrm{V}^{+}-0.8 \mathrm{~V}$). See the Typical Performance Characteristics curves.

APPLICATIONS INFORMATION

Gain
The open-loop gain is almost independent of load when the output is sourcing current. This optimizes performance
in single supply applications where the load is returned to ground. The typical performance photo of Open-Loop Gain for various loads shows the details.

TYPICAL APPLICATIONS

Square Wave Oscillator

$f=\frac{1}{2 R C}$
$V_{\text {OUT }}=5 \mathrm{~V}_{\text {P-p }}$ WITH 5V SUPPLY
$I_{S}=200 \mu \mathrm{~A}$
AT $V_{S}=5 \mathrm{~V}, \mathrm{R}=50 \mathrm{k}, \mathrm{C}=1 \mathrm{nF}$
OUTPUT IS 5kHz SLEW LIMITED TRIANGLE WAVE

Optional Output Compensation for Capacitive Loads Greater Than 200pF

SIMPLIFIED SCHEmATIC

PACKAG DESCRIPTION Dimensions in incteses minilimeters unless othemisise noted.

MS8 Package
8-Lead Plastic MSOP
(LTC DWG \# 05-08-1660)

* DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.006" (0.152 mm) PER SIDE
** DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS. INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.006 " (0.152 mm) PER SIDE

N8 Package

8-Lead PDIP (Narrow 0.300)
(LTC DWG \# 05-08-1510)

THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254 mm)

PACKAGE DESCRIPTION Dimensions in inches (millimeters) unless otherwise noted.

S8 Package
8-Lead Plastic Small Outline (Narrow 0.150)
(LTC DWG \# 05-08-1610)

*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH
SHALL NOT EXCEED 0.006 " $(0.152 \mathrm{~mm}$) PER SIDE
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD
FLASH SHALL NOT EXCEED 0.010" (0.254 mm) PER SIDE

Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights.

TYPICAL APPLICATION

Ring-Tone Generator

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1078/LT1079 LT2078/LT2079	Dual/Quad 55 A Max, Single Supply, Precision Op Amps	Input/Output Common Mode Includes Ground, $70 \mu \mathrm{~V} \mathrm{~V}_{\mathrm{OS} \text { (max) }}$ and $2.5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ Drift (Max), 200kHz GBW, 0.07V/ $\mu \mathrm{s}$ Slew Rate
LT1178/LT1179 LT2178/LT2179	Dual/Quad 17 $\mu \mathrm{A}$ Max, Single Supply, Precison Op Amps	Input/Output Common Mode Includes Ground, $70 \mu \mathrm{~V} \mathrm{~V}_{\mathrm{OS}(\mathrm{MAX})}$ and $4 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ Drift (Max), 85 kHz GBW, $0.04 \mathrm{~V} / \mu$ s Slew Rate
LT1366/LT1367	Dual/Quad Precision, Rail-to-Rail Input and Output Op Amps	$475 \mu \mathrm{~V} \mathrm{~V}_{\text {OS(MAX) }}, 500 \mathrm{~V} / \mathrm{mV} \mathrm{AVOL}^{\text {(min) }}$, 400 kHz GBW
LT1636	Single Over-The-Top Micropower Rail-to-Rail Input and Output Op Amp	$55 \mu A$ Supply Current, V_{CM} Extends 44 V above V_{EE}, Independent of $V_{\text {CC }}$, MSOP Package, Shutdown Function
LT1638/LT1639	Dual/Quad 1.2MHz Over-The-Top Micropower, Rail-to-Rail Input and Output Op Amps	0.4V/ μ S Slew Rate, 230^A Supply Current per Amplifier
LT1782	Micropower, Over-The-Top, SOT-23, Rail-to-Rail Input and Output Op Amp	SOT-23, $800 \mu \mathrm{~V} \mathrm{~V}_{0 \mathrm{~S}}(\mathrm{MAX}), \mathrm{I}_{\mathrm{S}}=55 \mu \mathrm{~A}$ (Max), Gain-Bandwidth $=200 \mathrm{kHz}$, Shutdown Pin
LT1783	1.2MHz, Over-The-Top, Micropower, Rail-to-Rail Input and Output Op Amp	SOT-23, $800 \mu \mathrm{~V} \mathrm{~V}_{\mathrm{OS}(\mathrm{MAX})}, \mathrm{I}_{\mathrm{S}}=300 \mu \mathrm{~A}$ (Max), Gain-Bandwidth $=1.2 \mathrm{MHz}$, Shutdown Pin

